EE 435
Homework 4 Solutions
Spring 2024
Problem 1 \& 2
NMOS

PMOS

Problem 3
Part A
The current through M1 is $\frac{P}{V_{D D}-V_{S S}} * \frac{1}{2}=83.33 \mu A$. So we can find W_{1} as foll

$$
W_{1}=\frac{2 I L}{\mu C_{o x} V_{E B}^{2}}=\frac{2 * 83.3 \mu * 2 \mu}{112.8 \mu * 0.2^{2}}=73.84 \mu \mathrm{~m}
$$

Part B
We know that $V_{E B 1}=V_{G S}-V_{T n}=0.2 \mathrm{~V}$. Quiescently, $V_{G}=0 \mathrm{~V}$. So:

$$
V_{G}-V_{S}-V_{T n}=-V_{S}-0.79 \mathrm{~V}=0.2 \rightarrow V_{S}=-0.99 \mathrm{~V}
$$

Part C
Create an expression for $V_{\text {OUT }}$ divided by $V_{I N}$:

$$
\begin{gathered}
g_{m 1} V_{I N}=V_{\text {OUT }}\left(s C_{1}+\frac{1}{R_{1}}\right) \\
A(s)=\frac{g_{m 1}}{s C_{1}+1 / R_{1}}
\end{gathered}
$$

Part D

Start by finding the DC gain:

$$
A_{0}=g_{m} R_{1}=\frac{2 * 83.33 \mu A}{0.2} * 50 k \Omega=41.665_{10}=32.39 \mathrm{~dB}
$$

Now find the corner frequency:

$$
s C_{1}+\frac{1}{R_{0}}=0 \rightarrow s=-\frac{1}{R_{1} C_{1}}=500 \mathrm{krad} / \mathrm{sec}
$$

Part E

As found in Part D, the 3dB bandwidth is $500 \mathrm{krad} / \mathrm{sec}$.

Part F

Increasing the power increases the gain-bandwidth, but not the bandwidth. The bandwidth is only dependent on R_{1} and C_{1}.

Problem 4

Part A
Pole spread, k, is defined simply to be p_{2} / p_{1}. The open-loop amplifier has poles located at $p_{2}=$ $10^{4} \mathrm{rad} / \mathrm{sec}$ and $p_{1}=5 \mathrm{rad} / \mathrm{sec}$. The pole spread is then:

$$
k=\frac{10^{4}}{5}=2000
$$

Part B

Begin by finding the amplifier's closed loop transfer function:

$$
\begin{gathered}
A_{C L}(s)=\frac{A(s)}{1+\beta A(s)}=\frac{\frac{10^{9}}{(s+5)\left(s+10^{4}\right)}}{1+\frac{\beta 10^{9}}{(s+5)\left(s+10^{4}\right)}}=\frac{10^{9}}{(s+5)\left(s+10^{4}\right)+10^{9} \beta} \\
=\frac{10^{9}}{s^{2}+s(10005)+50000+\beta 10^{9}}
\end{gathered}
$$

Let $\beta=0.1$:

$$
A_{C L}(s)=\frac{10^{9}}{s^{2}+s(10005)+50000+10^{8}}
$$

To find the pole Q , it is easiest to recall the following standard form:

$$
D(s)=s^{2}+\frac{p}{Q} s+p^{2}
$$

We can use this to solve for Q :

$$
\begin{gathered}
p=\sqrt{50000+10^{8}} \\
\frac{p}{Q}=\frac{\sqrt{50000+10^{8}}}{Q}=10005 \rightarrow Q=0.99975
\end{gathered}
$$

Part C

To find overshoot, ζ, start by finding the pole Q again with the new β.

$$
\begin{gathered}
A_{C L}(s)=\frac{10^{9}}{s^{2}+s(10005)+50000+5 * 10^{8}} \\
\frac{p=\sqrt{50000+5 * 10^{8}}}{Q}=\frac{\sqrt{50000+5 * 10^{8}}}{Q}=10005 \rightarrow Q=2.235
\end{gathered}
$$

Now recall that $\zeta=\frac{1}{2 Q}$.

$$
\zeta=\frac{1}{2 Q}=\frac{1}{4.47}=0.22
$$

Part D
Per Lecture 13 , slide 12 , to avoid ringing in the step response the pole Q should be $\frac{1}{2}$. We can then work backward to figure out what β gives this pole Q :

$$
\frac{p}{Q}=\frac{\sqrt{50000+\beta 10^{9}}}{1 / 2}=10005 \rightarrow \beta=0.0249
$$

The maximum closed-loop DC gain is $\frac{1}{\beta}=40$.

Part E

If we assume that the DC gain of the open-loop amplifier is not changed by adjusting the location of p_{1} (as stated by the problem), then we can assume A_{0} will continue being $20 \mathrm{k} V / V$. To achieve an optimal response with no ringing, we want a pole spread equal to $4 \beta A_{0}$ (Lecture 13 , Slide 12). In our case, $\beta=1$ and $A_{0}=20 \mathrm{kV} / \mathrm{V}$. So, we need a pole spread of 80 k .

If p_{2} remains at $10^{4} \mathrm{rad} / \mathrm{sec}$, we can find p_{1} easily:

$$
k=80 k=\frac{p_{2}}{p_{1}}=\frac{10^{4}}{p_{1}} \rightarrow p_{1}=\frac{10^{4}}{80 \mathrm{k}}=0.125 \mathrm{rad} / \mathrm{sec}
$$

The minimal adjustment is then $5-0.125=4.875 \mathrm{rad} / \mathrm{sec}$.

Problem 5

Part A
Begin by figuring out how much current flows through each branch of the amplifier. Let $I_{\text {BRANCH }}$ be the current through the left- and right-most branches (M_{5}, M_{6}, M_{8}, and M_{9}) and $I_{T A I L}$ b the current through the middle branch $\left(M_{7}\right)$.

The total power consumption of the amplifier structure is given to be 10 mW . The net current is then $I_{N E T}=\frac{10 \mathrm{~mW}}{2 V}=5 \mathrm{~mA}$.

Because M_{35} and M_{46} are both given to be 20, we can find the branch and tail current:

$$
\begin{gathered}
I_{\text {TAIL }}+2 I_{\text {BRANCH }}=5 \mathrm{~mA} \\
I_{\text {TAIL }}+2\left(20 * \frac{I_{\text {TAIL }}}{2}\right)=5 \mathrm{~mA} \\
I_{\text {TAIL }}+20 I_{\text {TAIL }}=5 \mathrm{~mA} \\
I_{\text {TAIL }}=238 \mu A \\
I_{\text {BRANCH }}=\frac{20 I_{\text {TAIL }}}{2}=2.38 \mathrm{~mA}
\end{gathered}
$$

If I know the $V_{E B}$ and drain current of each MOSFET, I can find the device size easily using the square-law equation for a MOSFET in saturation. Use the process parameters given at the top of the homework. That gives the below results:

Device	\mathbf{W} / \mathbf{L}
$M_{1} \& M_{2}$	105.77
$M_{3} \& M_{4}$	320.53
$M_{5} \& M_{6}$	6410.77
M_{7}	211.55
$M_{8} \& M_{9}$	2115.55

Part B

By inspection:

$$
\begin{gathered}
A_{0}=-\frac{M g_{m 1}}{g_{o 6}+g_{o 8}} \\
G B W=\frac{g_{m 1}}{C_{L}}
\end{gathered}
$$

Recalling that $g_{m}=\frac{2 I_{D Q}}{V_{E B}}$ and $g_{o} \approx \lambda I_{D Q}$:

$$
\begin{gathered}
g_{m 1}=\frac{20 * 2 \frac{238 \mu A}{2}}{0.15}=31.72 \mathrm{~m} \\
g_{o 6}=g_{08} \approx 0.01 V^{-1} I_{B R A N C H}=23.8 \mu \Omega^{-1} \\
A_{0}=-\frac{31.72 \mathrm{~m}}{47.6 \mu}=-666=56.4 \mathrm{~dB} \\
G B W=\frac{31.72 \mathrm{~m}}{10 p F}=3.172 G \frac{\mathrm{rad}}{\mathrm{sec}}=504.83 \mathrm{MHz}
\end{gathered}
$$

Part B

$$
g_{M E Q}=M * g_{m 1}=M * \frac{2 I_{D Q}}{V_{E B}}=20 * 2 * \frac{\frac{238 \mu A}{2}}{0.15}=31.73 \mathrm{mS}
$$

Problem 6

Part A
Let the positive input to the $g_{m 2}$ OTA be V_{x}. Start by defining two equations for the currents at V_{x} and $V_{\text {OUT }}$:

$$
\begin{gathered}
\left(V_{x}-V_{\text {IN }}\right) s C_{1}+g_{m 1} V_{\text {OUT }}=0 \\
V_{\text {OUT }} s C_{2}-g_{m 2}\left(V_{x}-V_{\text {OUT }}\right)=0
\end{gathered}
$$

Solve the first equation for V_{x} :

$$
V_{x} s C_{1}-V_{I N} s C_{1}-g_{m 1} V_{\text {OUT }}=0 \rightarrow V_{x}=\frac{V_{I N} s C_{1}-g_{m 1} V_{\text {OUT }}}{s C_{1}}
$$

Substitute into the second equation:

$$
\begin{gathered}
V_{\text {OUT }} s C_{2}-g_{m 2}\left(\frac{V_{I N} s C_{1}-g_{m 1} V_{\text {OUT }}}{s C_{1}}-V_{\text {OUT }}\right)=0 \\
V_{\text {OUT }}\left(s C_{2}+\frac{g_{m 2} g_{m 1}}{s C_{1}}+g_{m 2}\right)=V_{I N}\left(g_{m 2}\right) \\
V_{\text {OUT }}\left(\frac{s^{2} C_{1} C_{2}+g_{m 2} g_{m 1}+g_{m 2} s C_{1}}{s C_{1}}\right)=g_{m 2} V_{I N} \\
\frac{V_{\text {OUT }}}{V_{I N}}=T(s)=\frac{s C_{1} g_{m 2}}{s^{2} C_{1} C_{2}+g_{m 2} s C_{1}+g_{m 2} g_{m 1}}
\end{gathered}
$$

Part B

Problem 7 Consider the polynomial $D(s)=s^{2}+1500 s+3000$. It was pointed out in the lecture that when a second-order polynomial has widely separated poles on the negative real axis that the high-frequency pole can be closely approximated by considering only the s^{2} and s terms and the low frequency pole can be closely approximated by considering only the constant and the s-term in this expression. Compare the actual roots and the approximate roots for $D(s)$ and comment on how much error is introduced by using this approximation approach.

Solution: From the approximation given in class, from $\mathrm{s}^{2}+1500 \mathrm{~s}$, we obtain $\mathrm{p}_{2}=-1500$ and From $1500 \mathrm{~s}+3000$ we obtain $p_{1}=-2$. From the quadratic equation, the two roots are actually: $p_{2}=-1498$ and $p_{1}=-2.0027$. It can be observed that the approximation is very good for these widely separated poles.

Problem 8 and 9 Consider the 7-T op amp where all transistors are sized for $\mathrm{V}_{\mathrm{EB}}=0.1 \mathrm{~V}$ with a power dissipation of 2 mW split evenly between the first and second stage and where Miller compensation is used. Assume this is designed in a $0.18 \mu \mathrm{~m}$ CMOS process with $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-$ 1.2 V , and $\mathrm{C}_{\mathrm{L}}=100 f \mathrm{fF}$. Assume the process is characterized by parameters $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=300 \mu \mathrm{AV}^{-2}$, $\mathrm{V}_{\mathrm{TH}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{THP}}=-0.5 \mathrm{~V}, \mu_{\mathrm{p}}=\mu_{\mathrm{n}} / 3$, and $\lambda=0.01 \mathrm{~V}^{-1}$ for both the n -channel and p -channel devices.
a) Determine $\mathrm{V}_{\mathrm{B} 2}$ and $\mathrm{V}_{\mathrm{B} 3}$
b) Determine W/L for all transistors
c) What is the dc gain of this operational amplifier?
d) Determine C_{c} if the feedback amplifier is to have a closed-loop pole Q of 0.707 when $\beta=0.2$.
e) What is g_{m} ?

Solution:
a) $\mathrm{V}_{\mathrm{B} 2}-\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{THn}}+\mathrm{V}_{\mathrm{EB}}$ Thus $\mathrm{V}_{\mathrm{B} 2}=\mathrm{V}_{\mathrm{SS}}+\mathrm{V}_{\mathrm{THn}}+\mathrm{V}_{\mathrm{EB}}=(-1.2+0.5+0.1) \mathrm{V}=-0.6 \mathrm{~V}$. By the same argument, $\mathrm{V}_{\mathrm{B}}=-0.6 \mathrm{~V}$.
b) For all transistors, $\mathrm{I}_{\mathrm{D}}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{W}}{2 \mathrm{~L}} \mathrm{~V}_{\mathrm{EB}}^{2}$. Thus $\frac{\mathrm{W}}{\mathrm{L}}=\frac{2 \mathrm{I}_{\mathrm{D}}}{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{V}_{\mathrm{EB}}^{2}}$. Since 1 mW is dissipated in each stage and since the total supply voltage is 2.4 V , it follows that $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{D}}=0.417 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{D} 1}=0.209 \mathrm{~mA}$. It thus follows that $\mathrm{W} 1 / \mathrm{L} 1=139, \mathrm{~W} 3 / \mathrm{L} 3=417, \mathrm{~W} 7 / \mathrm{L} 7=278, \mathrm{~W} 5 / \mathrm{L} 5=834$ and W6/L6=278.
c) $\mathrm{A}_{0}=\frac{4}{\left(\lambda_{\mathrm{n}}+\lambda_{\mathrm{p}}\right)^{2} \mathrm{~V}_{\mathrm{EBI}} \mathrm{V}_{\mathrm{EB} 5}}=\frac{4}{.02^{2} 0.1^{2}}=10^{6}$
d)

$$
C_{C}=\frac{C_{L} 2 \theta(1-\theta) \beta}{Q^{2}} \frac{V_{E B 1}\left|V_{E B 5}\right|}{\left(V_{E B 1} 2 \theta-\beta \mid V_{E B 5}(1-\theta)\right)^{2}}
$$

With $\theta=0.5$, it follows that and $C_{L}=100 f F$, it follows that $C_{C}=24.7 \mathrm{fF}$
e) $g_{m 5}=2 \mathrm{I}_{\mathrm{DQ} 5} / \mathrm{V}_{\text {EB }} \quad \mathrm{I}_{\mathrm{DQ} 5} * 2.4 \mathrm{~V}=1 \mathrm{~mW} \quad$ so $\mathrm{I}_{\mathrm{DQ} 5}=0.42 \mathrm{~mA}$ thus $\mathrm{g}_{\mathrm{m}}=8.4 \mathrm{E}-3 \mathrm{AV}^{-1}$

